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Aging

Tissue atrophy

Somatic damage
(DNA, proteins, lipids, carbohydrates)



Cells have evolved cellular responses
to DNA-damage that leads
to loss of proliferative potential or death
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Stem cells have evolved unique responses to DNA-
damage that leads to their immediate expansion
and limits their regenerative potential
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Aging:
Is it influenced by environmental or genetic factors?

Environment:

* Demographic and twin studies: environment is much
more important determinant of human ageing
e (Caloric restriction extends life span



Calorie Restriction (CR)
(Reduction of dietary calorie intake, w/o malnutrition)

is the most robust and reproducible treatment-modality
known to slow aging and extend life span

Species Life-span Increase
Cerevisiae 75%
C. elegans 46%
D. melanogaster 28%
Medflies 22%
Grasshoppers 40%
Spiders 212%
Water fleas 69%
Rotifers 60%
Hamsters 30%
Mice 65%
Rats 85%
Dogs 16%

The effects of Calorie Restriction have been documented in diverse
species, from single-celled organisms to mammals



Effects of Calorie Restriction in mice

Extends both average and maximal life span
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Decreases the incidence of age-related diseases
(cancer, cardiovascular diseases, brain diseases)



Aging:
Is it influenced by environmental or genetic factors?

Genes:

* Different species exhibit different life span



1980s: mutations in single genes can significantly
extend lifespan in Caenorhabditis elegans

Longevity Mutations



1980-2013: Hundreds of longevity mutations
have been identified in model organisms
(yeasts, nematodes, fruit flies, mice)

v' Mutations that inactivate or decrease gene function (aging genes)

v' Mutations that activate gene function (longevity genes)



~25 Aging-genes in mice

GENE

Brcal + p53

Bub3 + Rael

BubR1 BUB1B
C/EBPCCAAT/enhancer-binding protein
GH growth hormone

CSA

GHR/BPgrowth hormone receptor
klotho

Ku86, XRCC5

LMNA Hutchinson-Gilford syndrome
MsrA

P53

P63, TP73L

P66shc

PASG

Pitl Snell dwarf mouse

PolgA

Propl Ames dwarf mouse

SIRT6

Terc + Atm

Terc + WRN Werner syndrome
uPA

WRN

XPD

PHENOTYPE

Premature ageing

Premature ageing

Premature aging

20% increase in lifespan
Putative accelerated ageing
Possible premature ageing
Increase in lifespan of 40-50%

Putative accelerated ageing

Premature aging

Possible premature ageing
Decreased lifespan
Premature ageing

Signs of premature ageing
Retarded ageing

Premature ageing

Lifespan increase of 42%
Possible premature ageing
Over 50% increases in lifespan
Premature ageing
Premature ageing
Premature ageing

20% increase in lifespan
Possible accelerated ageing
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Their effect on life span is variable
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Most longevity-mutations reduce incidence/severity
of late-onset diseases
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Most longevity genes
act in evolutionarily conserved pathways that regulate
growth, energy metabolism, and/or reproduction
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These pathways are inter-connected
and are involved in nutrition sensing
(Glucose, Aminoacids, Calories)
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Protective and metabolic actlivities that increase life span

Glycogen accumulation (except flies and mammals), glycerol accumulation (only yeast), fat accumulation (except yeast),
antioxidant enzyme SOD, catalase (except flies), HSPs (except mammals), autophagy, translation, ER stress, other ?
?

Anti-aging



* Is programmed aging the physiological
function of these genes?

 How/Why food/energy sensing and life-span
regulation are connected?



Our mice live in a protected environment
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Do aging-genes
increase early-life fitness in the wild?

Analysis of the life span
of p66 mice under outdoor conditions
(food competition; exposure to winter temperatures)



Wild condition selects against mutation
of the p66 aging-gene
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The health impact of mutating a aging gene
might depend on environmental factors

Potected Environment
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Why mice with mutation of the p66-aging gene
do not survive in a natural environment?

* No behavioral abnormalities or infection
vulnerability



Why mice with mutation of the p66-aging gene
do not survive in a natural environment?

 Defective fat accumulation
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Why mice with mutation of the p66-aging gene
do not survive in a natural environment?

* Defective energy conservation
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Why mice with mutation of the p66-aging gene
do not survive in a natural environment?

* Defective thermoregulation
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Why mice with mutation of the p66-aging gene
do not survive in a natural environment?

e Defective reproduction



P66-mutant mice are highly sensitive
to low-temperatures and food-scarcity

* No behavioral abnormalities or infection
vulnerability

* Defective fat accumulation
* Defective energy conservation
* Defective thermoregulation

e Defective reproduction

50% mortality of p66 mice
when simultaneously starved and exposed to cold



p66 senses the mitochondrial energetic state
and regulates insulin signaling
using H,0, as second messenger
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p66 is activated by energy intake
(and repressed by starvation)

Food
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p66 regulates adaptation of the organism
to changes in the energetic niche

Resource
\?V'hen.Food Allocation When Food
is available .
is scarce
Increased pé6 activity \_/ Decreased p66 activity
(transient increase in (decreased ROS production)
ROS production) ‘
Fat accumulation, Maximized energy
reproduction production,

energy conservation no reproduction



The function of p66 becomes “detrimental”
when food is constantly present

When Food is
constantly present
(in a protected environment)

Continuous
activation

of p66 and ROS
production
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In a protected environment, p66 increases intracellular
oxidative stress, accelerates aging and induces obesity

 Increases oxidative stress
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In a protected environment, p66 increases intracellular
oxidative stress, accelerates aging and induces obesity

 induces cellular senescence
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In a protected environment, p66 increases intracellular
oxidative stress, accelerates aging and induces obesity

* increases stress-induced apoptosis
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In a protected environment, p66 increases intracellular
oxidative stress, accelerates aging and induces obesity

 reduces numbers of Stem Cells
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In a protected environment, p66 increases intracellular
oxidative stress, accelerates aging and induces obesity

* accelerates aging




In a protected environment, p66 increases intracellular
oxidative stress, accelerates aging and induces obesity

* induces obesity
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Can the identified pro-ageing pathways
be manipulated to extend lifespan
by pharmacological means?
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Many (CR mimetics) are found in plants
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Blood-orange juice:

e Reprograms metabolism
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* Inhibits fat accumulation in mice
* Decreases heart ischemia/reperfusion injury
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