Aging and Memory: How to Foster Successful Functioning in Old Age

Lars Bäckman Aging Research Center Karolinska Institute

The Future of Science: Secrets of Longevity, Venice, September 19-21, 2013

Patterns of Cognitive Aging

• Functions that decline: mental tempo, attention, episodic memory

Episodic memory

 Memory for temporally and spatially bound information (e.g., What you had for lunch yesterday; Details from your last vacation)

Recall and Recognition

• Two ways of testing your episodic memory

Free Recall of Words

Laukka et al, Psychol Aging, 2013

Recognition of Words

Laukka et al, Psychol Aging, 2013

Conclusion

Support at episodic memory retrieval is very important in aging

Patterns of Cognitive Aging

- Functions that decline: mental tempo, attention, episodic memory
- Well preserved functions: short-term memory, semantic memory

Short-Term Memory Digit Span 80-89 90+ Age

Laukka et al, Psychol Aging, 2013

Patterns of Cognitive Aging

- Functions that decline: mental tempo, attention, episodic memory
- Well preserved functions: short-term memory, semantic memory

Semantic Memory

Laukka et al, Psychol Aging, 2013

Cognitive Changes in Aging: Biological Origins

1. Grey-matter losses in critical brain regions: frontal cortex, hippocampus

Age-Related Grey-Matter Losses

Raz et al, Cerebr Cortex, 2008

Age-Related Grey-Matter Losses

Raz et al, Cerebr Cortex, 2008

Cognitive Changes in Aging: Biological Origins

- 1. Grey-matter losses in critical brain regions: frontal cortex, hippocampus
- 2. Age-related changes in white-matter structure

Age-Related White-Matter Losses

Raz et al, Cerebr Cortex, 2008

Cognitive Changes in Aging: Biological Origins

- 1. Grey-matter losses in critical brain regions: frontal cortex, hippocampus
- 1. Age-related changes in white-matter structure
- 2. Losses of neurotransmitters: Focus on dopamine

Age-Related DA Losses in Striatum

Bäckman et al, Am J Psychiatr, 2001

Age-Related DA Losses in Frontal Cortex

Suhara et al, *Psychopharmacology*, 1991

Kaasinen et al, Neurobiol Aging, 2001

Individual Differences

Nyberg et al, Trends Cogn Sci, 2012

Individual Differences in Normal Cognitive Aging

- **Demographic factors** (sex, education)
- Life-style factors (physical, mental, and social activities)
- **Biological factors** (vitamin B12, folic acid, blood pressure, depressive symptoms)
- Genetic factors (specific genes: APOE, COMT, BDNF)

The Landscape of Adult Memory Development

Lövdén et al, Psychol Bull, 2010

Individual Differences in Normal Cognitive Aging

- **Demographic factors** (sex, education)
- Life-style factors (physical, mental, and social activities)
- **Biological factors** (vitamin B12, folic acid, blood pressure, depressive symptoms)
- Genetic factors (specific genes: APOE, COMT, BDNF)

The Landscape of Adult Memory Development

Lövdén et al, Psychol Bull, 2010

The Landscape of Adult Memory Development

Lövdén et al, Psychol Bull, 2010

Individual Differences

Nyberg et al, Trends Cogn Sci, 2012

Successful Cognitive Aging

Compensation: Origins in lesion studies; used in behavioral research on cognitive aging (e.g., Bäckman, 1984, 1985); very often applied in neuroimaging work on aging and cognition (e.g., Cabeza, 2002; Reuter-Lorenz & Cappell, 2008). A likable concept!

Successful Cognitive Aging

Compensation: Origins in lesion studies; used in behavioral research on cognitive aging (e.g., Bäckman, 1984, 1985); often applied in neuroimaging work on aging and cognition (e.g., Cabeza, 2002; Reuter-Lorenz & Cappell, 2008). **A likable concept!**

Brain maintenance: Individual differences in the manifestation of age-related brain changes and pathology allow some people to show little or no age-related cognitive decline (Nyberg et al, 2012)

1. Preserved hippocampal volume in aging is linked to higher episodic memory performance (Lupien et al, *Neuroimage*, 2007; Fjell et al, *J Neurosci*, 2009)

- 1. Preserved hippocampal volume in aging is linked to higher episodic memory performance (Lupien et al, *Neuroimage*, 2007; Fjell et al, *J Neurosci*, 2009)
- 1. Preserved white-matter structure in aging is linked to faster speed of processing and better executive functions (Raz et al, *Neuroimage*, 2010, *Neurobiol Aging*, 2012)

- 1. Preserved hippocampal volume in aging is linked to higher episodic memory performance (Lupien et al, *Neuroimage*, 2007; Fjell et al, *J Neurosci*, 2009)
- 1. Preserved white-matter structure in aging is linked to faster speed of processing and better executive functions (Raz et al, *Neuroimage*, 2010, *Neurobiol Aging*, 2012)
- 1. A "youth-like" activation pattern during working memory among old persons is associated with proficient memory performance (Nagel et al, *PNAS*, 2009, *J Cognit Neurosci*, 2011)

- 1. Preserved hippocampal volume in aging is linked to higher episodic memory performance (Lupien et al, *Neuroimage* 2007; Fjell et al, *J Neurosci* 2009)
- 1. Preserved white-matter structure in aging is linked to faster speed of processing and better executive functions (Raz et al, *Neuroimage* 2010, *Neurobiol Aging* 2012)
- 1. A "youth-like" activation pattern during working memory among old persons is associated with proficient memory performance; at the level of young adults (Nagel et al, *PNAS* 2009, *J Cognit Neurosci* 2011)
- 2. Older persons with well preserved dopaminergic pathways are as fast as younger persons (Rieckmann et al, *Cerebr Cortex* 2011, *J Neurosci* 2012)

- 1. Preserved hippocampal volume in aging is linked to higher episodic memory performance (Lupien et al, *Neuroimage* 2007; Fjell et al, *J Neurosci* 2009)
- 1. Preserved white-matter structure in aging is linked to faster speed of processing and better executive functions (Raz et al, *Neuroimage* 2010, *Neurobiol Aging* 2012)
- 1. A "youth-like" activation pattern during working memory among old persons is associated with proficient memory performance; at the level of young adults (Nagel et al, *PNAS* 2009, *J Cognit Neurosci* 2011)
- 2. Older persons with well preserved dopaminergic pathways are as fast as younger persons (Rieckmann et al, *Cerebr Cortex* 2011, *J Neurosci* 2012)
- 3. Low amyloid burden in aging is linked to high memory performance (Rentz et al, *Ann Neurol* 2009; Rodrigue et al, *Neurology* 2012)

Training of Cognitive Functions in Aging

 Systematic training of episodic memory and executive functions

Episodic memory training

Training of Cognitive Functions in Aging

• Systematic training of episodic memory and executive functions

• Are improvements maintained over time?

Memory training: 8-month follow-up

Training of Cognitive Functions in Aging

• Systematic training of episodic memory and executive functions

• Are improvements maintained over time?

Age differences in degree of improvement after training?

Cognitive and Brain Plasticity

Dahlin et al, *Science*, 2008 Bäckman et al, *Science*, 2011

Cognitive and Brain Plasticity

Striatum

Training gains in scanner

Dahlin et al, *Science*, 2008 Bäckman et al, *Science*, 2011

Cognitive and Brain Plasticity

Striatum

Training gains in scanner

Dahlin et al, *Science*, 2008 Bäckman et al, *Science*, 2011

Dopamine Release After Training

1. Memory decline in aging is quite differential

- 1. Memory decline in aging is quite differential
- 1. Multiple alterations in brain structure and function underlie age-related cognitive deficits

1. Memory decline in aging is quite differential

- 1. Multiple alterations in brain structure and function underlie age-related cognitive deficits
- 1. There are huge individual differences in memory among older adults

1. Memory decline in aging is quite differential

- 1. Multiple alterations in brain structure and function underlie age-related cognitive deficits
- 1. There are huge individual differences in memory among older adults
- 2. Aging is characterized by a substantial cognitive reserve capacity

Optimally Healthy Older Adults

